If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-40x-360=0
a = 10; b = -40; c = -360;
Δ = b2-4ac
Δ = -402-4·10·(-360)
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40\sqrt{10}}{2*10}=\frac{40-40\sqrt{10}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40\sqrt{10}}{2*10}=\frac{40+40\sqrt{10}}{20} $
| -29=5(-1+2a)+2a | | 10-m=+1-5m | | 3f+7=19-1f | | 3x-10=+4 | | -4n-2=-1-4n | | 1/2t(t+7)=32 | | 7u^2+14u+7=0 | | 1/4-3=3/4(x-8) | | -4(-2x+2)=16 | | 3g=-5+3g | | x+2x=117 | | c/6+4=10 | | 5x+5(2x-17)=20 | | 10+4w=8w-10 | | -4x-18=15 | | 5x-2(x-2)=7x+4 | | (4−5y)=−2(3.5y−8)= | | 1/3x+7=16 | | 25/6=1/2a | | 9x−6=219x-6=21 | | 0=-4s+4s | | 5/7b+3=8 | | X-1+2x-3=30+4x | | 5y+5=3y-31 | | -3x-18=7x | | 6m+5=10 | | -7+6z=6z+9 | | -28=15y=17 | | -28=15y | | -4w=-3-8 | | 1b=15/7 | | -5p=-2p-3 |